


Overview

Project Summary

● Name: Sirius
● Address: 0xf8DDA7b3748254d562f476119B0aE6044bAd10a5
● Platform: Polygon
● Language: Solidity
● Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name Sirius

Version v2

Type Solidity

Date June 27 2023

Logs June 9 2023; June 27 2023

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 2

Total Low-Severity issues 2

Total informational issues 5

Total 9

Contact
E-mail: support@salusec.io

1

https://polygonscan.com/address/0xf8DDA7b3748254d562f476119B0aE6044bAd10a5


Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2



Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Users may not be able to claim tokens if maxSupply is exceeded 6
2. Inconsistency maxSupply between code and whitepaper 7
3. Misuse of variables in TokenAvailableToClaim function 8
4. Centralization risk 9

2.3 Informational Findings 10
5. Use of floating pragma 10
6. Typo on function parameters 11
7. Use of deprecated ERC777 standard 12
8. Missing events for critical functions 13
9. Gas optimization suggestions 14

Appendix 15
Appendix 1 - Files in Scope 15

3



Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4



Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Users may not be able to claim tokens if
maxSupply is exceeded

Medium Business Logic Acknowledged

2 Inconsistency maxSupply between code and
whitepaper

Medium Configuration Resolved

3 Misuse of variables in TokenAvailableToClaim
function

Low Business Logic Acknowledged

4 Centralization risk Low Centralization Mitigated

5 Use of floating pragma Informational Configuration Acknowledged

6 Typo on function parameters Informational Code Quality Acknowledged

7 Use of deprecated ERC777 standard Informational Business Logic Acknowledged

8 Missing events for critical functions Informational Auditing and
Logging

Acknowledged

9 Gas optimization suggestions Informational Gas
Optimization

Acknowledged

5



2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Users may not be able to claim tokens if maxSupply is
exceeded

Severity: Medium Category: Business Logic

Target:
- Token777.sol

Description

The maximum supply of tokens is defined in the ERC777 contract. A check is performed in
the _mint function to ensure that the total supply does not exceed the maxSupply. However,
in the add_Users_Claiming_List and change_Users_TokensToClaim functions, which are
operations performed by the owner, there is no check against the maxSupply. Therefore, if
the owner mistakenly lets the sum of userTokensToClaim be a value exceeding the
maxSupply, users will be unable to claim further rewards once the claimed amount reaches
the supply limit.

Recommendation

Consider adding a check in the add_Users_Claiming_List and
change_Users_TokensToClaim functions to ensure that the claimable tokens do not exceed
maxSupply.

Status

This issue has been acknowledged by the team. The team stated that they have several
layers of safeguards in place to prevent it.

6



2. Inconsistency maxSupply between code and whitepaper

Severity: Medium Category: Configuration

Target:
- ERC777.sol

Description

According to the whitepaper, the total supply of tokens should be 60,309,023.

However, the defined value of _maxSupply in the code is 61309023 * 1e18.

ERC777.sol:L42
uint256 private _maxSupply=61309023*1e18;

Recommendation

Consider fixing the mismatch between code and whitepaper.

Status

This issue has been resolved by the team. According to their new whitepaper:

7

https://4718396c5c6dc5c875ce785e84ed784b.cdn.bubble.io/f1683758328530x376162728106876700/Sirius%20White%20Paper.pdf
https://4718396c5c6dc5c875ce785e84ed784b.cdn.bubble.io/f1686901310392x869069126134242400/Sirius%20White%20Paper.pdf


3. Misuse of variables in TokenAvailableToClaim function

Severity: Low Category: Business Logic

Target:
- Token777.sol

Description

Token777.sol:L100-L125
function TokenAvailableToClaim(address _user) public view returns (uint256){

if(block.timestamp>userStartClaimPeriod[msg.sender]){
...

}
}

Here should check userStartClaimPeriod for _user instead of msg.sender.

Recommendation

Consider changing if(block.timestamp>userStartClaimPeriod[msg.sender]) to
if(block.timestamp>userStartClaimPeriod[_user]).

Status

This issue has been acknowledged by the team.

8



4. Centralization risk

Severity: Low Category: Centralization

Target:
- Token777.sol

Description

There is a privileged role in the Sirius_by_Humanity contract.

The owner of the Sirius_by_Humanity contract

● Can update the whitelist and the amount of tokens users can claim;
● Can withdraw all tokens inside the contract through return_To_Owner function.

If the owner's private key is compromised, an attacker could add himself to the whitelist and
set a huge number of tokens he can claim. If the privileged account is a plain EOA account,
this can be worrisome and pose a risk to the other users.

Recommendation

Consider transferring the privileged roles to multi-sig accounts.

Status

This issue has been mitigated by the team. The team has transferred the ownership to a
Gnosis Safe multi-sig wallet.

9

https://polygonscan.com/tx/0x1161c0021be0c5a16231b6947e4a411d3d8481b197a7e40e87ef12719f6f876a
https://polygonscan.com/address/0xa7b2fc813dd66dfc0dc6ff2278d9b9babb60a5e0#code


2.3 Informational Findings

5. Use of floating pragma

Severity: Informational Category: Configuration

Target:
- Token777.sol

Description

pragma solidity ^0.8.18;

The Sirius_by_Humanity contract uses a floating compiler version ^0.8.18.

Using a floating pragma is discouraged, as code may compile to different bytecodes with
different compiler versions. Use a locked pragma statement to get a deterministic bytecode.
Also use the latest Solidity version to get all the compiler features, bug fixes and
optimizations.

Recommendation

It is recommended to use a locked Solidity version throughout the project. It is also
recommended to use the most stable and up-to-date version.

Status

This issue has been acknowledged by the team.

10



6. Typo on function parameters

Severity: Informational Category: Code Quality

Target:
- Token777.sol

Description

Token777.sol:L40
function add_Users_Claiming_List(uint256[] memory listTokensToClaim, address[] memory
listAdress) onlyOwner public returns (bool)

Token777.sol:L60
function change_Users_TokensToClaim(uint256[] memory listTokensToClaim, address[] memory
listAdress) onlyOwner public returns (bool)

Token777.sol:L86
function remove_from_List(address[] memory listAdress) onlyOwner public returns (bool)

These are spelling mistakes in listAdress.

Recommendation

Consider changing listAdress to listAddress.

Status

This issue has been acknowledged by the team.

11



7. Use of deprecated ERC777 standard

Severity: Informational Category: Business Logic

Target:
- Token777.sol

Description

As of v4.9, OpenZeppelin’s implementation of ERC-777 is deprecated. This decision was
taken mainly due to 3 factors:

1. Huge potential attack vectors arise because of callbacks;
2. The expensive gas architecture of standard;
3. Complex to implement.

Further details can be found here.

Recommendation

Consider switching to ERC20.

Status

This issue has been acknowledged by the team.

12

https://docs.openzeppelin.com/contracts/4.x/api/token/erc777
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/2620


8. Missing events for critical functions

Severity: Informational Category: Auditing and Logging

Target:
- Token777.sol

Description

The functions that make critical changes should emit events. Events allow capturing the
changed states so that off-chain tools/interfaces can register such changes with timelocks
that allow users to evaluate them. The alternative of directly querying on-chain contract state
for such changes is not considered practical for most users/usages.

Missing events do not promote transparency and if such changes immediately affect users’
perception of fairness or trustworthiness, they could exit the protocol causing a reduction in
protocol users.

Throughout the Sirius codebase, events are lacking in the whitelist modification functions
(e.g. add_Users_Claiming_List(), change_Users_TokensToClaim(), remove_from_List()).

Recommendation

Consider adding events to all functions that change the whitelist.

Status

This issue has been acknowledged by the team.

13



9. Gas optimization suggestions

Severity: Informational Category: Gas Optimization

Target:
- Token777.sol

Description

Token777.sol:L43
Token777.sol:L63
Token777.sol:L87
for(uint i=0;i<listAdress.length;i++)

Since the values default to zero, the initialization can be removed to save gas.

Token777.sol:L40
function add_Users_Claiming_List(uint256[] memory listTokensToClaim, address[] memory
listAdress) onlyOwner public returns (bool)

Token777.sol:L60
function change_Users_TokensToClaim(uint256[] memory listTokensToClaim, address[] memory
listAdress) onlyOwner public returns (bool)

Token777.sol:L86
function remove_from_List(address[] memory listAdress) onlyOwner public returns (bool)

For read-only function parameters, a common gas-saving practice is to use calldata instead
of memory.

Token777.sol:L47
if(userIsWhitelisted[address_user]==false)

Token777.sol:L66
if(userIsWhitelisted[address_user]==true)

Token777.sol:L102
if (userIsWhitelisted[_user]==false)

Token777.sol:L129
require(userIsWhitelisted[msg.sender]==true,"Not Whitelisted");

It is unnecessary to compare boolean variables to boolean literals.

Recommendation

Consider removing unnecessary variable initialization.
Consider using calldata instead of memory for read only function parameters to save gas.
Consider removing the comparison to boolean literals.

Status

This issue has been acknowledged by the team.

14



Appendix

Appendix 1 - Files in Scope
This audit covered the following files from address

0xf8DDA7b3748254d562f476119B0aE6044bAd10a5:

File SHA-1 hash

Token777.sol 4af5d6d2b0ccf0f5ea7c4e6389822b006fa7e705

IERC777.sol e31fce05afc5e49c55620d42b7d380f46a198370

Context.sol f2f4dfdb86e9435268219ff58ef3db28f9f98a11

IERC777Recipient.sol 0ac412b88ab50713a897b0ad4e52f0f2cf5510c5

IERC1820Registry.sol 3f38a302de4a86585ec621d99d2a7e76182116ae

Address.sol a9ce1425371ef4514494abdbce0b1e0bd770a23e

Ownable.sol 6e1d4b1c71b11ab929022ce1194ded1b6153788e

ERC777.sol d0ed7feb4e626578e6de81907018ba2ffd0bee57

IERC777Sender.sol 8c113b25b40235c62fc7a6020f04d84b36d8892f

ReentrancyGuard.sol 586a4b7c629326cd95ad1fa4ec56828eb653f940

IERC20.sol f61145ff3132ad25b2906fde7381081510259789

15

https://polygonscan.com/address/0xf8DDA7b3748254d562f476119B0aE6044bAd10a5

